
NetworKit: An Interactive Tool Suite
for High-Performance Network Analysis

Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke

Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Germany
http://parco.iti.kit.edu

Abstract

We introduce NetworKit, an open-source software package for high-performance analysis of large
complex networks. Complex networks are equally attractive and challenging targets for data mining,
and novel algorithmic solutions as well as parallelization are required to handle data sets containing
billions of connections. Our goal for NetworKit is to package results of our algorithm engineering e�orts
and put them into the hands of domain experts. NetworKit is a hybrid combining the performance of
kernels written in C++ with a convenient interactive interface written in Python. The package supports
general multicore platforms and scales from notebooks to workstations to servers. In comparison with
related software for network analysis, we propose NetworKit as the package which satisfies all of three
important criteria: High performance (partly enabled by parallelism), interactive workflows and integration
into an ecosystem of tested tools for data analysis and scientific computation. The current feature set
includes standard network analytics kernels such as degree distribution, connected components, clustering
coe�cients, community detection, k-core decomposition, degree assortativity and centrality. Applying
these to massive networks is enabled by e�cient algorithms, parallelism or approximation. Furthermore,
the package comes with a collection of graph generators and has basic support for visualization. With
the current release, we present and open up the project to a community of both algorithm engineers and
domain experts.

Contents
1 Introduction 2

1.1 Design Goals 2
1.2 Architecture 3

2 Basics 3
2.1 Graph Data Structure 4

3 Analytics 4
3.1 Degree Distribution 6
3.2 Degree Assortativity 6
3.3 Diameter 6
3.4 Clustering Coe�cients 7
3.5 Components and Cores 8
3.6 Centrality 8

3.7 Community Detection 9

3.8 Additional Graph Algorithms 10

4 Generators 10

5 Example Workflows 13

6 Comparison to Related Software 17

6.1 Description of Related Software 18

6.2 NetworKit in Comparison 19

7 Miscellaneous 21

7.1 Infrastructure 21

7.2 History and Roadmap 22

1

1 Introduction

Complex networks are heterogeneous datasets appearing in very di�erent domains but sharing certain
structural characteristics. Social (e.g. a friendship graph), technical (e.g. the internet or electric power grids),
biological (e.g. protein interaction networks) or informational (e.g. the world wide web) networks are only a
few examples for the large variety of phenomena modeled as networks [18, 13]. Accordingly, network analysis
methods are quickly becoming pervasive in science, technology and society: Node ranking by centrality is the
basis for modern web search [37], community detection methods find applications on social media sites [24] or
in cancer research [29], and tracking social influence through networks is equally interesting to sociologists [23]
and advertisers. It seems plausible that network analysis is going to yield groundbreaking insights in the
future as our theoretical understanding and our computing capabilities increase: Recall for example that the
human brain at the neuronal scale is a complex network on the order of 1010 nodes and 1014 edges [4], whose
mapping and analysis is still beyond current technology.

Already on the more modest scale of 106 to 1010 edges, complex networks challenge current algorithms
and available implementations. It is evident that the need to process such networks within a data analysis
workflow requires us to utilize the parallel processing capabilities of multicore systems wherever possible.
With NetworKit, we intend to push the boundaries of what can be done interactively on a shared-memory
parallel computer, also by users without in-depth programming skills. In this work, we give an introduction
to the toolkit and describe it under algorithm and software engineering aspects.

1.1 Design Goals

There is already a variety of software packages which provide graph algorithms in general and network
analysis capabilities in particular, some of them free and open-source, some of them under development for
years. Nonetheless, we claim that so far none of them balances di�erent strengths in the way NetworKit does
(see Section 6 for a comparison to related packages). Our software is designed to stand out with respect to
three areas:

Performance. Algorithms and data structures are selected and implemented with high performance and
parallelism in mind. Some implementations are among the fastest in published research. For example,
community detection in a 3 billion edge web graph can be performed on a machine with 16 physical cores
and 256 GB of RAM in a matter of minutes [45].

Interface. Networks are as diverse as the series of questions we might ask of them - for example, what is
the largest connected component, what are the most central nodes in it and how do they connect to each
other? A practical tool for network analysis should therefore avoid restricting the user to fixed and predefined
tasks, as most static command line interfaces do. Rather, the aim must be to create convenient and freely
combinable functions. In this respect we take inspiration from software like R, MATLAB and Mathematica, as
well as a variety of Python packages. An interactive shell, which the Python language provides, meets these
requirements. While NetworKit works with the standard Python 3 interpreter, combining it with the IPython
Notebookallows us to integrate it into a fully fledged computing environment for scientific workflows [38]. It
is also straightforward to set up and control a remote server for heavy computations.

Integration. As a Python module, NetworKit enables seamless integration with Python libraries for scientific
computing and data analysis, e. g., pandasfor data frame processing and analytics, matplotlib for plotting,
networkx for additional network analysis tasks, or numpy and scipy for advanced numeric and scientific
computation. Furthermore, NetworKit aims to support a variety of input/output formats.

2

1.2 Architecture

In order to achieve the design goals described above, we implement NetworKit as a hybrid of high-performance
code written in C++, with an interface and additional functionality written in Python. NetworKit is distributed
as a Python package, ready to use interactively from a Python shell, which is the main usage scenario we
envision. However, the code can also be used as a library for application programming either at the Python
or C++ level. Throughout the project we use object-oriented and functional concepts. On the C++ level, we
make extensive use of closures, using the lambda syntax introduced with C++11. Shared-memory parallelism
is realized with OpenMP, providing loop parallelization and synchronization constructs while abstracting
away the details of thread creation and handling. The roughly 18 000 lines of C++ code include unit tests
written in the googletest framework.

C++ / OpenMP

Data Structures I/O TestsAlgorithms

Cython

Python
Task-oriented Interface

Additional
Functionality

Pythonized Classes

Wrapper Classes

IP[y]

NetworKit

numpyscipy pandas networkxmatplotlib

IPython Notebook

Figure 1: NetworKit architecture overview

Connecting these native implementations to the Python world is enabled by the Cython toolchain [11]. Among
other things, Cython can compile pure Python code to C or C++, circumventing the Python interpreter, and
also allows for static type annotations – yielding considerable speedup in combination. Currently we use
Cython merely to integrate native code by compiling it into a native Python extension module. In order
to expose a C++ class to Python with Cython, one needs to a) declare the interface of the class and b)
write a Python wrapper class through which method calls are delegated to the native object. The benefits
of Python integration are the following: First of all, NetworKit’s functionality can be accessed interactively.
Thus, analysis kernels can be freely combined. Furthermore, NetworKit can be seamlessly integrated into
the rich Python ecosystem for data analysis. We consider this kind of integration crucial for real-world data
analysis workflows.

2 Basics

Before discussing the collection of network analysis kernels, we briefly describe basic concepts and data
structures used throughout NetworKit. We also introduce some notation used in this text: We denote as
G = (V, E, Ê) an undirected graph, consisting of a node set V , an edge set E and an optional weight function

3

Ê : E æ RØ0. An undirected edge {u, v} connects nodes u and v, where u = v is possible. We denote the
degree of a node, i. e. the number of incident edges, as deg(v).

2.1 Graph Data Structure

The NetworKit.Graph class implements an undirected, optionally weighted graph using an adjacency
array data structure with O(n + m) memory requirement. A node is represented by a 64 bit integer
index (type node), and an edge is identified by an undirected pair of node. The basic container is an
std::vector<std::vector<node> > in which a node index addresses the adjacencies of the respective
node. An undirected edge {u, v} is stored as two entries, one for the adjacency u æ v and one for v æ u.
This allows for the retrieval of all neighbors of a node u in O(deg(u)) time. Weights (of type double

defined as edgeweight) are stored in an analog stucture. Edge insertion is therefore possible at the cost
of two std::vector::push back operations. Checking for or deleting an edge {u, v} requires a scan of the
adjacencies in O(deg(u)). A graph can contain nodes from a certain index range [0, z], which can also be
extended. Node deletion is implemented by marking the index as deleted in a boolean vector. At the C++
level, the class provides convenient (parallel) iterator methods which hide the details of the data structure
and accept arbitrary operations on nodes or edges in the form of a function, e. g., lambda expression. In
the following example, we pass a lambda function to the iterator method to initialize a value for each node.
Because the lambda expression creates a closure which captures variables from the surrounding scope by
reference, the syntax is quite similar to a standard for-loop.

1 std::vector<node> tempMap(G.upperNodeIdBound());
2 G.parallelForNodes([&](node v){
3 tempMap[v] = v; // initialize to identity

4 });

Internally, the Graph class enumerates nodes in parallel, checks whether they are present in the graph and
calls the given function once per node.

1 template<typename L> inline void NetworKit::Graph::parallelForNodes(L handle) {
2 #pragma omp parallel for

3 for (node v = 0; v < z; ++v) {
4 if (exists[v]) {
5 handle(v);
6 }
7 }
8 }

Identifying nodes by nothing more than an integer index implies that the graph data structure does not
need to provide storage for node attributes, which can be handled by any container that can be addressed
by the node indices. In practice, this approach has proven beneficial for writing performant algorithm
implementations.

3 Analytics

This section describes the current set of network analysis algorithms implemented in NetworKit. A basic
definition of the concepts is followed by a description of the specific algorithm(s). An index of features
pointing to the corresponding function or class is provided by Table 1.

4

1

feature group submodule feature class / function

input/output graphio graph from file readGraph(path, [format])

write graph to file writeGraph(G, path, [format])

nxadapter NetworkX compatibility nk2nx(G)
nx2nk(G)

general properties properties tabular overview overview(G)

size size(G)

density density(G)

degree distribution degreeDistribution(G)

degree power law fit powerLawFit(G)

degree power law
exponent

powerLawExponent(G)

degree assortativity degreeAssortativity(G)

diameter Diameter

clustering coefficients clustering(G)
ClusteringCoefficient

connected components components(G)
ConnectedComponents

core decomposition CoreDecomposition(G)

centrality centrality betweenness BetweennessCentrality(G)

community
detection

community main function detectCommunities(G, [algorithm])

PLP PLP([theta])

PLM PLM([refinement?, resolution, parallelism,
maxIter])

EPP EPPFactory

CNM CNM

generators generators Erdös-Renyi ErdösRenyiGenerator(n,p)

Barabasi-Albert BarabasiAlbertGenerator(k, nMax, n0)

Chung-Lu ChungLuGenerator(degSeq)

Havel-Hakimi HavelHakimiGenerator(degSeq)

Table 1: Feature index

5

3.1 Degree Distribution

The degree distribution plays an important role in characterizing a network: Empirically observed complex
networks tend to show a heavy tailed degree distribution which follow a power-law with a characteristic
exponent. Such networks have been categorized as scale-free [7], referring to the fact that it is not possible
to pick a node of typical degree. Consequently, measures such as the average degree for all nodes convey very
little information about the network.

Definition 1. A scale-free network is a network in which the frequency p(k) of nodes with degree k follows a

power law with coe�cient “
p(k) ≥ k≠“ (1)

The powerlaw Python module, developed by Alstott et al. [3], employs statistical methods from [17, 30] to
determine if a probability distribution fits a power law. Since the original code was written for Python 2, we
distribute a Python 3 version with NetworKit. We provide a function which returns whether a power law
degree distribution is considered a good fit, and also a second parameter R quantifying the goodness of the fit:

R is the loglikelihood ratio between the two candidate distributions. This number will be positive
if the data is more likely in the first distribution, and negative if the data is more likely in the
second distribution. The exponential distribution is the absolute minimum alternative candidate
for evaluating the heavy- tailedness of the distribution. The reason is definitional: the typical
quantitative definition of a ”heavy- tail” is that it is not exponentially bounded. Thus if a power
law is not a better fit than an exponential distribution (as in the above example) there is scarce
ground for considering the distribution to be heavy-tailed at all, let alone a power law. – [3]

In case a power law degree distribution is present, a function returns the exponent “, which has been found
to be a characteristic property of a complex networks. For further analysis the raw degree distribution can
also be obtained.

3.2 Degree Assortativity

Generally, a network shows assortative mixing with respect to a certain property P if nodes with similar values
for P tend to be connected to each other. Degree assortativity measures the mixing with respect to node
degree, which is an important aspect of the network structure, pointing e. g., to a hierarchical composition.
Its strength is often expressed as degree assortativity coe�cient r, which lies in the range ≠1 Æ r Æ 1. High
values occur in networks with assortative mixing by degree such as many social networks. There, high-degree
nodes are preferentially attached to other high-degree nodes (and low-degree to low-degree). A strong negative
value for r indicates disassortative mixing, i. e. high-degree nodes tend to connect to low-degree ones. Note
that r is an example of a Pearson correlation coe�cient with a covariance in its numerator and a variance in
the denominator [34]. Below is Newman’s equivalent reformulation, which we implement in NetworKit with
O(m) time and constant memory requirements.

Definition 2. The degree assortativity coe�cient r is defined as

r =
[1

m

!
{u,v}œE

deg(u) deg(v)] ≠ [1
2m

!
{u,v}œE

deg(u) + deg(v)]2

[1
2m

!
{u,v}œE

deg2(u) + deg2(v)] ≠ [1
2m

!
{u,v}œE

deg(u) + deg(v)]2
.

3.3 Diameter

The diameter of a graph is the maximum length of a shortest path between any two nodes [33]. A surprising
observation about the diameter of complex networks is often referred to as the small world phenomenon,

6

or specifically in social networks, six degrees of separation: The diameter tends to be very small, and often
constant or even shrinking with network growth.

Definition 3. Let d(u, v) denote the distance of nodes u and v in an undirected graph G = (V, E). We

define:

ecc(v) := max {d(v, w) : w œ V } eccentricity of v

diam(G) := max {ecc(v) : v œ V } diameter of G

While we provide a function to calculate the exact diameter using BFS for unweighted or Dijkstra’s algorithm
for weighted graphs, this is impractical for the large networks we target. Diameter estimation is therefore
a critical feature. The approximation algorithm due to Magnien et al. [32] iteratively yields an upper and
lower bound for the diameter, which it iteratively improves by performing two steps until the desired error is
reached: Computing the eccentricity of a random node, and computing a BFS tree starting from a random
node. The algorithm thereby harnesses the observations that ecc(v) Æ diam(G) Æ 2 · ecc(v) for any node v
and diam(G) Æ diam(T) for any spanning tree T of G.

3.4 Clustering Coe�cients

Clustering coe�cients are key figures for the amount of transitivity in complex networks, i. e. the tendency of
edges to form between indirect neighbor nodes. For example, the global clustering coe�cient is typically quite
high in social networks, whose generative processes have a tendency to close triangles: Intuitively speaking,
humans tend to connect to friends of friends. In contrast, the clustering coe�cient is close to 0 for random
graphs.

Definition 4. Let W be the set of wedges, i. e. of the paths of length 2, in G. Moreover, let � be the set of

triangles, i. e. of the circles of length 3, in G.

The global clustering coe�cient C
g

measures the fraction of triangles to the total number of wedges [33]:

C
g

(G) = 3 · |�|
|W | (2)

Let �(v) and W (v) denote the set of triangles containing v and the set of wedges with v as central node,

respectively. Moreover, let V Õ := V \ {u œ V : deg(u) Æ 1} and C(v) := |�(v)|
|W (v)| = |�(v)| ·

"deg(v)
2

#≠1
.

The average local clustering coe�cient C
l

averages the nodes’ tendency to form triangles:

C
l

(G) := 1
|V Õ|

$

vœV

Õ

C(v) (3)

The factor 3 accounts for symmetries (each triangle is part of three wedges). C
g

ranges from 0 to 1 and is 1
if the graph is complete (a clique). A straightforward calculation of the clustering coe�cient with a node
iterator requires O(nd2

max

) time. Even with a parallel implementation, this will be very time-consuming for
networks in the size range of many million edges. Instead, it is possible to approximate clustering coe�cients
in essentially linear or even constant time, depending on the respective measure. Details on their wedge
sampling approximation algorithm can be found in Schank and Wagner [42]. NetworKit o�ers both the exact
and the approximate calculation of clustering coe�cients.

7

3.5 Components and Cores

Components and cores are related concepts for subdividing a network: All nodes in a connected component
are reachable from each other. A typical pattern in real-world complex networks is the emergence of a giant
connected component, containing a large part of all nodes. It is usually accompanied by a large number of
very small components.

Definition 5. For an undirected graph G = (V, E), a connected component is a subgraph GÕ = (V Õ, EÕ) in

which any two nodes from V Õ
are connected by a path.

We compute connected components in linear time using a label propagation scheme. After initializing each
node with a unique integer label, we perform multiple iterations over the node set and let each node adopt
the highest label in its neighborhood. It is straightforward that a connected component will eventually adopt
a single label.

Core decomposition allows for a more fine-grained subdivision of the node set according to connectedness.
k-cores result from successively peeling away nodes of degree k.

Definition 6. A k-core C
k

is a maximal subgraph in which each node is adjacent to at least k other nodes.

A connected component is thus equivalent to a 1-core. A k-core decomposition also lets us categorize nodes
according to the highest-order core in which they are contained, assigning a core number to each node.

Definition 7. The core number k
v

of a node v œ V is the highest value of k for which there is a k-core which

contains v.

For each possible k œ {0, 1, 2, . . . } in increasing order, we arrive at the k-core by iteratively removing nodes
with degrees less than k. The algorithm implemented in NetworKit uses a bucket data structure for managing
remaining node degrees, similar to the one used by Fiduccia and Mattheyses for graph partitioning [22]. Our
algorithm’s total running time is O(m), matching other implementations [10]. For each value of k, a certain
fraction of nodes is removed, leaving a smaller core of more connected nodes. This process also yields the core

collapse sequence, a list of the numbers (or fractions) of nodes removed in each iteration. A uniform sequence
indicates uniform density and cohesiveness of the graph. An irregular sequence points to the presence of
strongly cohesive groups of nodes embedded in shells of more peripheral, weakly connected nodes [43]

3.6 Centrality

Centrality refers to the relative importance of a node within a network. Di�erent ideas of importance are
expressed by measures such as degree centrality, betweenness, closeness and eigenvector centrality. We
distribute an e�cient implementation for betweenness centrality.

Betweenness. Betweenness centrality expresses the concept that a node is important if it lies on many
shortest paths between nodes in the network.

Definition 8. Given an undirected, optionally weighted graph G = (V, E, Ê), let ‡
st

denote the number of

shortest paths between nodes s and t, and ‡
st

(v) the number of such paths which contain v as an intermediate

node. The betweenness centrality of a node v is defined as

c
b

(v) :=
$

{s,t}œV ◊V :s ”=v ”=t

‡
st

(v)
‡

st

(4)

8

A naive algorithm for calculating all c
b

(v) for v œ V would require cubic time. We implement Brandes’s
algorithm [14], by which betweenness centrality can be computed more e�ciently, using O(nm + n2 log n)
time and O(n + m) space for weighted graphs. For unweighted graphs, running time is reduced to O(nm).
For sparse unweighted graphs (e. g., complex networks) this means a running time improvement by the factor
O(n).

3.7 Community Detection

Community detection is the task of identifying groups of nodes in the network which are significantly more
densely connected among each other than to the rest of nodes. NetworKit started as a testbed for the novel
parallel community detection algorithms PLP, PLM and EPP [46, 45], which remain a prominent feature.

Community detection is a data mining problem where various definitions of the structure to be discovered –
the community – exist. This fuzzy task can be turned into a well defined optimization problem by using
community quality measures, first and foremost modularity [26]. We approach community detection from the
perspective of modularity maximization: Faced with an NP-hard optimization problem [15], we engineered
parallel heuristics which deliver a good tradeo� between modularity and running time. Other objective
functions can be integrated into these algorithms fairly easily as long as the e�ect on the objectives by a local
community change can be computed locally as well. In the following, we briefly introduce modularity and
then describe a number of algorithms.

Modularity. Modularity measures the quality of a partition ’ of V by comparing its coverage, i. e. the
fraction of edges contained within a community, with the coverage it would achieve in a randomized null-model
graph. Thus, a high modularity partition covers significantly more edges than expected by chance

Definition 9. Let Ê(u, C) :=
!

{u,v}:vœC

Ê(u, v) be the weight of all edges from u to nodes in community

C, and define the volume of a node and a community as vol(u) :=
!

{u,v}:vœN(u)Ê(u, v) + 2 · Ê(u, u) and

vol(C) :=
!

uœC

vol(u), respectively. The modularity of a partition is defined as

mod(’, G) :=
$

Cœ’

%
Ê(C)
Ê(E) ≠ vol(C)2

4Ê(E)2

&
(5)

We provide parallel code for the fast computation of the modularity of a partition of the node set with respect
to a graph.

PLP. Community detection by label propagation, as originally introduced by Raghavan et al. [40], extracts
communities from a labelling V æ N of the node set. Initially, each node is assigned a unique label, and
then multiple iterations over the node set are performed: In each iteration, every node adopts the most
frequent label in its neighborhood. Densely connected groups of nodes thus agree on a common label, and
eventually a globally stable consensus is reached, which usually corresponds to a good solution for the network.
Label propagation therefore finds communities in near linear time: Each iteration takes O(m) time, and the
algorithm has been empirically shown to reach a stable solution in only a few iterations. The local update
rule and the absence of global variables make label propagation well suited for a parallel implementation.

PLP is our parallel implementation of community detection by label propagation. We adapt the original
algorithm to make it applicable to weighted graphs. Iteration continues until the number of nodes which
changed their labels falls below a threshold ◊, which often yields considerable speedup at the cost of a
negligible loss of modularity. PLP is by far the fastest community detection method in NetworKit, but
generally stays significantly behind other methods in terms of the achieved modularity.

9

PLM. The Louvain method for community detection was first presented by Blondel et al. [12]. It can be
classified as a locally greedy, bottom-up multilevel algorithm and uses modularity as the objective function.
In each pass, nodes are repeatedly moved to neighboring communities so that the locally maximal increase
in modularity is achieved, until the communities are stable. Then, the graph is coarsened according to
the solution and the procedure continues recursively, forming communities of communities. Finally, the
communities in the coarsest graph determine those in the input graph by direct prolongation.

We provide a shared-memory parallelization of the Louvain method (PLM) in which node moves are evaluated
and performed in parallel instead of sequentially. We also extend the method by an optional refinement
phase, i. e. when a partition is returned from prolongation, nodes are again moved for modularity gain. This
approach was described as the PLMR algorithm and can be switched on by a parameter of the implementation.

EPP. In machine learning, ensemble learning is a strategy in which multiple base classifiers or weak

classifiers are combined to form a strong classifier. Classification in this context can be understood as deciding
whether a pair of nodes should belong to the same community.

The EPP scheme works as follows: In a preprocessing step, assign G to an ensemble of base algorithms. The
graph is then coarsened according to the core communities ’̄, which represents the consensus of the base
algorithms. Coarsening reduces the problem size considerably, and implicitly identifies the contested and the
unambiguous parts of the graph. After the preprocessing phase, the coarsened graph GÕ is assigned to the
final algorithm, whose result is applied to the input graph by prolongation. We instantiate this scheme with
PLP as a base algorithm and PLM or PLMR as the final algorithm.

CNM. For comparison, we also include a sequential implementation of the well-known CNM method for
modularity maximization [16]. However, algorithm and implementation are not nearly as scalable as the
ones described above.

Choice of Algorithm. In extensive experiments, we compared our community detection methods to other
current e�orts in the field [45]. A Pareto evaluation (see Figure 2), relating modularity and running time,
showed that our algorithms deliver a favorable tradeo�. We recommend the PLM algorithm as the default
choice for modularity-driven community detection in large networks. A small quality boost can be achieved
by enabling refinement (i. e. the PLMR algorithm), at the cost of some running time. For very large networks
in the range of billions of edges, PLM running time can be undesirably high. In this case, PLP delivers a
better time to solution, albeit with a quality loss. A middle ground can be achieved by combining PLP and
PLM in the EPP ensemble scheme.

3.8 Additional Graph Algorithms

In addition to the aforementioned network analysis methods, NetworKit also includes a collection of basic
graph algorithms, breadth-first and depth- first search, Dijkstra’s algorithm for shortest paths and code for
computing approximate maximum weight matchings.

4 Generators

Generative models aim to explain how networks form and evolve specific structural features. Such models and
their implementations as generators have at least two important uses: On the one hand, software engineers
want generators for synthetic datasets which can be arbitrarily scaled and parametrized and produce graphs
which resemble the real application data. On the other hand, network scientists need models to increase their

10

Figure 2: Pareto evaluation of current community detection algorithms

understanding of network phenomena: What are the rules that guide the formation and evolution of the
complex networks we observe? If we observe common structures in very di�erent domains (e.g. as di�erent
as society and biochemistry), is it because common abstract principles are at work? What are ”typical” and
”untypical” structures that emerge? Can we make predictions based on models?

So far, NetworKit provides e�cient generators for basic Erdős-Rényi random graphs, the Barabasi-Albert
model (which produces a power law degree distribution) and the Chung-Lu and Havel-Hakimi model (which
replicate any realizable degree distribution).

Erdős-Rényi Model. In this simple probabilistic model edges are created among n nodes with a uniform
probability of p for each of the {u, v} pairs. It is the earliest attempt to create a formal method for generating
graphs, developed by Paul Erdős and Alfred Rényi in the 1950s [36]. Not intended to generate realistic graphs,
it was viewed as a source of mathematical examples, and an extensive analytical examination followed. We
include an e�cient implementation as described in [9].

Clustered Random Graphs. A simple variation of the Erdös-Renyi model is useful for generating graphs
which have distinctive dense areas with sparse connections between them (i. e. communities). Nodes are
equally distributed over k subsets, while nodes from the same subset are connected with probability p

in

and
nodes from di�erent subsets with a smaller probability p

out

.

Barabasi-Albert Model. The Barabasi-Albert model [2] implements a preferential attachment process
(”rich become richer”) which results in a power-law degree distribution. The model was introduced in order
to produce scale-free networks. Both Erdős–Rényi and Watts-Strogatz models (chronological predecessors)
are not able to generate networks with such properties. According to the model, the probability that a new
node will be attached to an existing node v is defined as:

p(v) = deg(v)
!

uœV

deg(u)

User-defined parameters are the number of nodes to be generated and the number of edges each new node
introduces into the graph. Focused on generating a power law degree distribution, the model lacks realism in
other aspects (e.g. community structure [41]), and the scalability of the generator is limited.

11

Chung-Lu Model. The Chung-Lu model [1] is a random graph model which aims to replicate a given
degree distribution. Given a degree sequence, the method creates edges between nodes with a probability of

p(u, v) = deg(u)deg(v)
!

k

deg(k) ,

which recreates the degree sequence in expectation. The model can be conceived as a weighted version of the
Erdös-Renyi model, and has been shown to have similar capabilities as the SKG or R-MAT model [39].

Havel-Hakimi Generator. For a given realizable degree sequence, the algorithm of Havel and Hakimi [28]
generates a graph with exactly this degree sequence. While this is similar to the Chung-Lu model, the
generative process promotes the formation of closed triangles, leading to a higher (and possibly more realistic)
clustering coe�cient.

PubWeb Generator. This network model is motivated by the P2P computing library PubWeb and has
been presented previously [25]. For the generative process nodes are embedded into the 2D Euclidean unit
torus (square with wrap-around boundaries). To create edges, a variation of the disc graph model is employed
with a uniform communication radius r for all nodes. A node is connected to up to k nearest neighbors
within its communication radius.

12

5 Example Workflows

In the following, we present a few examples for possible workflows, highlighting the interactive capabilities of
NetworKit. Our platform is a shared- memory server with 256 GB RAM and 2x8 Intel(R) Xeon(R) E5-2680
cores (32 threads due to hyperthreading) at 2.7 GHz.

Networks at a Glance. NetworKit uses many of the analytics kernels described above to provide an
overview of important structural features of a network. The properties.overview function prints a profile
of the data set in tabular form. The following example gives an overview of the PGPgiantcompo graph, a
social network and web of trust resulting from signatures on PGP public keys [44]. As we see, the network
consists of a single connected component, has a power law degree distribution, a diameter in the range [22, 24],
shows assortativity with respect to node degrees, moderate clustering and a distinctive modular structure.

1 In [1]: from NetworKit import *
2

3 In [2]: G = readGraph("input/PGPgiantcompo.graph")
4

5 In [3]: properties.overview(G)
6

7 Network Properties: PGPgiantcompo
8 ==================
9 Basic Properties

10 ------------------------- --------------
11 nodes (n) 10680
12 edges (m) 24316
13 density 0.000426
14 isolated nodes 0
15 self-loops 0
16 min. degree 1
17 max. degree 205
18 avg. degree 4.553558
19 degree power law fit? True, 2.101144
20 degree power law exponent 1.6997
21 degree assortativity 0.2382
22 ------------------------- --------------
23 Path Structure
24 ------------------------- --------
25 connected components 1
26 size of largest component 10680
27 estimated diameter range (22, 24)
28 ------------------------- --------
29 Community Structure
30 --- ----------- --------
31 approx. avg. local clustering coefficient 0.437505
32 PLP community detection
33 communities 845
34 modularity 0.780827
35 PLM community detection
36 communities 98
37 modularity 0.883877
38 --- ----------- --------

Comparison of networks is now straightforward. Consider for example soc- LiveJournal, a network extracted
from the LiveJournal webpage, which combines online social networking and blogging – at 43 million edges
a data set that we consider medium-sized [5]. The network consists of many components, but clearly one
connected component is dominant. Clustering and community structure seem somewhat less pronounced, but
still present. There is a clear power-law degree distribution, but practically no degree assortativity. Creating
this overview takes less than two minutes.

13

1 Network Properties: soc-LiveJournal
2 ==================
3 Basic Properties
4 ------------------------- ---------------
5 nodes (n) 4847571
6 edges (m) 43369619
7 density 0.000004
8 isolated nodes 0
9 self-loops 518382

10 min. degree 1
11 max. degree 20334
12 avg. degree 17.786404
13 degree power law fit? True, 11.284630
14 degree power law exponent 1.3853
15 degree assortativity 0.0217
16 ------------------------- ---------------
17 Path Structure
18 ------------------------- -------
19 connected components 1876
20 size of largest component 4843953
21 estimated diameter range None
22 ------------------------- -------
23 Community Structure
24 --- ----------- --------
25 approx. avg. local clustering coefficient 0.366108
26 PLP community detection
27 communities 29931
28 modularity 0.547508
29 PLM community detection
30 communities 4704
31 modularity 0.768956
32 --- ----------- --------

Using Generative Models. Much early work in network science has focused on degree distributions
of complex networks as well as generative models to reproduce them. In this workflow we demonstrate
one of the available graph generators, and also show that the degree distribution yields only a very partial
characterization of a network. Given the degree sequence of any network, the Havel-Hakimi generator
produces a synthetic graph which realizes this degree sequence exactly. In this case, we input the degree
sequence of soc-LiveJournal.

As expected, properties of the degree distribution are replicated closely. However, the generator also introduces
degree assortativity, manifolds the number of connected components and communities, and increases the
clustering coe�cient. In general, the replica is a very di�erent network compared to the original.

14

1 In [10]: %time H = generators.HavelHakimiGenerator([G.degree(v) for v in G.nodes()]).generate()
2 Wall time: 24.8 s
3

4 In [11]: properties.overview(H)
5 Network Properties: G#10
6 ==================
7 Basic Properties
8 ------------------------- ---------------
9 nodes (n) 4847571

10 edges (m) 43110428
11 density 0.000004
12 isolated nodes 0
13 self-loops 0
14 min. degree 1
15 max. degree 20334
16 avg. degree 17.786404
17 degree power law fit? True, 11.284630
18 degree power law exponent 1.3853
19 degree assortativity 0.2014
20 ------------------------- ---------------
21 Path Structure
22 ------------------------- -------
23 connected components 699256
24 size of largest component 3259587
25 estimated diameter range None
26 ------------------------- -------
27 Community Structure
28 --- ----------- --------
29 approx. avg. local clustering coefficient 0.650352
30 PLP community detection
31 communities 312047
32 modularity 0.823445
33 PLM community detection
34 communities 699988
35 modularity 0.983613
36 --- ----------- --------

A Web Scale Network. So far, these analyses did not pose a challenge in terms of processing time or
memory. In fact, an analysis of the soc-LiveJournal network is practical with NetworkX (see Table 2 for a
running time comparison). In the following, we test the scalability of our software with an analysis of the
large web graph uk-2007-05, a hyperlink graph of the .uk domain consisting of more than 100 million nodes
and 3.3 billion edges.

NetworkX NetworKit Speedup factor
connected components 42s 5s 8.4
avg. local clustering coe!cient 39min 30s 15 min 47 s 2.5
degree assortativity 3min 36s 650 ms 332.3
core decomposition 3min 55s 26.8 s 8.8

Table 2: Running time comparison on soc-LiveJournal.

One of the most time-consuming tasks is reading the graph from file. After this is done, we can quickly
determine the size of the graph and minimum, maximum and average node degree. For a graph of this size,
we were so far not able to analyze the degree distribution using the third-party powerlaw module because
the implementation exhausts our available main memory of 256 GB.

15

1 In [1]: %time G = readGraph("uk-2007-05.metis.graph")
2 Wall time: 14min 4s
3

4 In [2]: properties.size(G)
5 Out[2]: (105896555, 3301876564)
6

7 In [3]: %time properties.degrees(G)
8 CPU times: user 1.35 s, sys: 2 ms, total: 1.35 s
9 Wall time: 397 ms

10 Out[3]: (0, 975419, 62.3604151050995)

When running NetworKit from the IPython Notebook, matplotlib integration makes it very easy to produce
publication-quality figures within the same session, and without a detour through file I/O. Here, plotting the
degree distribution of the network with logarithmic axes shows some similarity to the characteristic power
law pattern, but with some anomaly for low-degree nodes.

1 In[4]: dd = properties.degreeDistribution(G)
2 xscale("log")
3 xlabel("degree")
4 yscale("log")
5 ylabel("number of nodes")
6 plot(dd)

Figure 3: Degree distribution of uk-2007-05

The following function determines the number and size distribution of connected components. The network
is not connected, and there are over 700 000 components.

1 In [5]: %time cc = properties.components(G)
2 Wall time: 2min 45s
3

4 In [6]: cc[0]
5 Out[6]: 756936

We now want to find out if this web graph is strongly clustered. While exact calculation of clustering
coe�cients would be very tedious, we can get a good estimate in a fraction of a second:

16

1 In [7]: %time properties.clustering(G)
2 INFO:root:taking 23026 samples
3 Wall time: 300 ms
4 Out[7]: 0.7375575436463129

Next, we perform community detection using the PLP and PLM algorithm. Modularity and number of
communities indicate whether the network has a distinctive community structure. There is a qualitative
di�erence in the results of both algorithms – which one is more appropriate depends very much on the
research question asked and requires domain-specific evaluation.

1 In [6]: %time community.detectCommunities(G, community.PLP())
2 PLP(updateThreshold=1058) detected communities in 50.325546741485596 [s]
3 solution properties:
4 ------------------- -------------
5 # communities 906041

6 min community size 1
7 max community size 354494
8 avg. community size 116.878
9 modularity 0.970867

10 ------------------- -------------
11 Wall time: 1min 26s
12 Out[6]: <_NetworKit.Partition at 0x7f2620709030>
13

14 In [8]: %time community.detectCommunities(G, community.PLM())
15 PLM(balanced,refinement) detected communities in 399.4341833591461 [s]
16 solution properties:
17 ------------------- -------------
18 # communities 762739

19 min community size 1
20 max community size 822890
21 avg. community size 138.837
22 modularity 0.996288
23 ------------------- -------------
24 Wall time: 7min 13s
25 Out[8]: <_NetworKit.Partition at 0x7f2620709a80>

For later analysis, the communities can also be saved to disk as a partition file in which line i contains the
partition index of node i.

1 In [17]: community.writeCommunities(Out[8], "uk2007-plm.ptn")

Calculating the degree assortativity coe�cient can also be done in a short amount of time, showing that
degrees are correlated slightly negatively.

1 In [10]: %time properties.degreeAssortativity(G)
2 Wall time: 26.4 s
3 Out[10]: -0.10445556727737432

6 Comparison to Related Software

In the following, we are going to compare NetworKit to software packages with similar scope of application.
Network analytics packages o�er a collection of analysis kernels through a specific user interface. We selected
a number of software packages which we see as close to NetworKit in one aspect or the other, and compare
them with respect to design goals, usability, feature set and other criteria. Although the boundaries to

17

graph frameworks (e. g., Boost Graph Library) are often blurred, we do not consider them su�ciently similar.
Table 4 shows a comparison of the feature sets. Table 3 compares non-functional aspects.

6.1 Description of Related Software

1

NetworKit NetworkX KDT JUNG GraphCT SNAP STINGER Pajek Gephi igraph

language C++, Python Python C++, Python Java C, Java, Python,
Ruby, R

C C Closed source Java C, Python,
Ruby, R

interface object-oriented,
functional

object-oriented,
functional

object-oriented object-oriented procedural procedural procedural GUI GUI, object-
oriented

procedural

platform cross-platform cross-platform cross-platform cross-platform
(JRE)

 x86 / CrayXMT cross-platform x86 / CrayXMT x86 - Windows cross-platform
(JRE)

cross-platform

parallelism shared memory
(OpenMP, TBB)

- distributed
memory (MPI)

- shared memory
(Cray XMT)

shared memory
(OpenMP)

shared memory
(OpenMP / Cray
XMT)

- shared memory
(JVM)

-

license MIT BSD BSD BSD BSD GPL BSD proprietary CDDL 1.0, GPL
v3

GPL

first release 1.0 (Mar 2013) 0.22 (Jun 2005) 0.1 (Mar 2011) Prefuse Alpha
(May 2005)

0.3.3 (Jul 2009) 0.1 (Feb 2008) 2008 0.01 (Jan 1997) 0.6 alpha 1 (Jul
2008)

0.1 (Jan 2006)

latest release 2.1 (Feb 2014) 1.8.1 (Aug
2013)

0.3 (Apr 2013) 2.0.1 (Jan 2010) 0.8.0 (Sep 2012) 0.4 (Aug 2010) r633 (Aug 2013) 3.15 (Mar 2014) 0.8.2 beta (Jan
2013)

0.6.5 (Mar
2013)

web http://
parco.iti.kit.edu/
software/
networkit.shtml

http://
networkx.github.io/

http://
kdt.sourceforge.net/

http://
jung.sourceforge.net/

https://
trac.research.cc.gate
ch.edu/graphs/wiki/
GraphCT

http://
snap.stanford.edu/
snap/index.html

http://
www.stingergraph.c
om/

http://pajek.imfm.si https://gephi.org/ http://
igraph.sourceforge.
net/

Table 3: Comparison of network analysis software

NetworkX. NetworkX [27] is a feature-rich Python package for network analysis whose development started
in 2002. NetworkX is considered the de-facto standard for the analysis of small to medium networks in a
Python environment. For these reasons, NetworKit aims for compatibility with NetworkX through functions
for the conversion of graph object, and it is also currently the basis for our graph drawing capabilities.
NetworkX has a large feature set and provides a highly flexible graph data structure, but its applicability to
large graphs is limited.

igraph. igraph [19] is a C library aimed at allowing to create and manipulate networks with millions of
nodes and edges. In addition to the C library, igraph provides interfaces for Python, R, and Ruby (all use
the same C code base).

Gephi. Gephi [8] is a vizualisation and analysis package. It has a rich graphical user interface that allows
to use the package without coding, as well as advanced visualization capabilities, analytics and plotting
functionality, as well as “data laboratory” view. This makes Gephi a popular popular choice for data
exploration. Gephi Toolkit makes the functionality accessible as a Java library.

Pajek. Pajek is a program for analyzing and visualizing large networks. A closed sourced stand-alone tool,
it is available for free for noncommercial use. Currently, Pajek only runs on Microsoft Windows operating
system. It was first released in 1997 and is still occasionally updated. A special edition – Pajek XXL aims to
allow analysis of larger networks. The XXL version stores only a part of the network in memory. Some of the
Pajek functionality is not available in the XXL version.

18

JUNG. JUNG [35] (Java Universal Network/Graph Framework) is a Java-based library for modeling,
analysis, and visualizing data that can be represented as a network. In addition to static networks, JUNG
has support for dynamic (evolving) networks, which are unsupported by the majority of popular libraries.
The latest version of the library – JUNG 2.0.1 was released in 2010. Thus, JUNG lacks some of the modern
algorithms and features.

KDT. The Knowledge Discovery Toolbox (KDT) [31] is a project with a focus similar to NetworKit: It
provides high-performance kernels through an interactive Python interface. The underlying graph representa-
tion is algebraic. KDT is layered on top of Combinatorial BLAS, a linear algebra library which provides
sparse matrix classes and operations. It is written in C++ and uses MPI for distributed memory parallelism.
Version 0.3 of the package appeared in May 2013. Due to its early stage of development, it currently has a
limited feature set.

GraphCT. GraphCT (Graph Characterization Toolkit) [20] is written in C and targets both general
multicore systems and the specialized parallel platform Cray XMT. Similar to NetworKit, the graph resides in
main memory and is accessed by multiple threads. The defining feature of the Cray XMT architecture is
that it uses massive hardware multithreading and fast thread switching to hide memory latency. GraphCT
includes a basic collection of network analysis kernels.

SNAP. SNAP (Small-world Network Analysis and Partitioning) [6] is a C library using OpenMP primitives
for parallelization. SNAP’s feature set includes several fundamental graph algorithms as well as network
analysis queries, in particular betweenness centrality and community detection. Interactive workflows are not
supported, but SNAP’s design is meant to be extensible. The last release dates from August 2010.

STINGER. STINGER (Spatio-Temporal Interaction Networks and Graphs Extensible Representation) [21]
has started as a dynamic graph structure and has been extended over time by various graph and network
analysis algorithms. These algorithms can be used within a standalone command line tool or as a library.
Targeted at shared-memory platforms including the Cray XMT, STINGER focusses on fast execution.
Recently, productivity-oriented interfaces to Python and Java for loading data into the graph, querying the
graph, and analytics methods have been added as well.

6.2 NetworKit in Comparison

It becomes clear that these network analysis tools vary widely in terms of target platform, user interface,
scalability and feature set. We therefore need to locate NetworKit relative to these related e�orts. A systematic
experimental comparison is not within the scope of this paper. Instead, we give the following informal
assessment: As frequent users of NetworkX, we consider the package a model in terms of feature completeness
and usability. However, the flexibility of a (largely) Python implementation comes at the cost of a high
memory footprint of graphs and slower than native execution time. Processing billion-edge networks in
NetworkX is out of reach for our practical purposes. Due to the similar interface, users of NetworkX are likely
to move easily to NetworKit for larger networks. Related e�orts such as KDT, SNAP, GraphCT and STINGER
o�er similar high performance (and sometimes parallelism) through native implementations. However, to
characterize a complex network in practice we need a substantial set of analysis kernels which not all of these
frameworks currently provide. We therefore recommend NetworKit to users who aim for a comprehensive
structural analysis of large complex networks in the range of 106 to 1010 edges. Specialized programming
skills are not required, though users familiar with the Python ecosystem of data analysis tools will appreciate
the possibility to seamlessly integrate our toolkit.

19

1

Feature
Group

Feature Sub-Feature Netw
orKit

Netw
orkX

Gep
hi

JUNG Pajek KDT STIN
GER

Grap
hCT

SNA
P

igrap
h

General API ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤

interactive ⬤ ⬤ ⬤ ◯ ⬤ ⬤ ◯ ◯ ◯ ⬤

Data
Structures

graph (undirected/directed/
weighted)

⬤◯ ⬤ ⬤⬤⬤ ⬤⬤⬤ ⬤⬤⬤ ⬤⬤⬤ ⬤⬤⬤ ⬤⬤⬤ ⬤⬤⬤ ⬤⬤⬤ ⬤⬤⬤

hypergraph ◯ ◯ ◯ ⬤ ◯ ⬤ ◯ ◯ ◯ ◯

Algorithms connected components ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤

search (BFS/DFS) ⬤◯ ⬤⬤ ⬤⬤ ⬤◯ ⬤⬤ ⬤◯ ⬤◯ ◯◯ ⬤⬤ ⬤⬤

weighted shortest path ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ◯ ◯ ⬤ ⬤

degree distribution ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤

power law estimation ⬤ ◯ ⬤ ◯ ◯ ◯ ◯ ◯ ◯ ⬤

degree assortativity ⬤ ⬤ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ⬤

core decomposition ⬤ ⬤ ⬤ ◯ ⬤ ◯ ⬤ ⬤ ⬤ ⬤

diameter (ex./ap.) ⬤⬤ ⬤◯ ⬤◯ ⬤◯ ⬤◯ ◯◯ ⬤◯ ◯ ⬤ ⬤⬤ ⬤◯

centrality betweenness (ex./ap.) ⬤◯ ⬤◯ ⬤◯ ⬤◯ ⬤◯ ⬤⬤ ⬤◯ ⬤◯ ⬤◯ ⬤⬤

closeness (ex./ap.) ◯◯ ⬤◯ ⬤◯ ⬤◯ ⬤◯ ◯◯ ◯◯ ◯ ⬤◯ ⬤⬤

eigenvector/page rank ◯ ⬤ ⬤ ⬤ ⬤ ⬤ ⬤ ◯ ⬤ ⬤

clustering coefÞcients (ex./ap.) ⬤⬤ ⬤ ⬤ ⬤ ⬤◯ ◯ ⬤ ⬤ ⬤◯ ⬤◯

community detection ⬤ ◯ ⬤ ⬤ ⬤ ◯ ⬤ ◯ ⬤ ⬤

modularity ⬤ ◯ ⬤ ◯ ◯ ◯ ⬤ ⬤ ⬤ ⬤

matching ⬤ ⬤ ◯ ◯ ⬤ ◯ ◯ ◯ ◯ ⬤

independent set ◯ ⬤ ◯ ◯ ◯ ⬤ ◯ ◯ ◯ ⬤

spectral properties ◯ ⬤ ◯ ◯ ◯ ◯ ◯ ◯ ⬤ ◯

ßows ◯ ⬤ ⬤ ⬤ ⬤ ◯ ◯ ◯ ◯ ⬤

Generators Erdšs-Renyi ⬤ ⬤ ⬤ ⬤ ⬤ ◯ ◯ ◯ ⬤ ⬤

Barabasi-Albert ⬤ ⬤ ⬤ ⬤ ⬤ ◯ ◯ ◯ ⬤ ⬤

R-MAT ◯ ◯ ◯ ◯ ◯ ⬤ ⬤ ⬤ ⬤ ◯

Watts-Strogatz ◯ ⬤ ⬤ ◯ ◯ ◯ ◯ ◯ ⬤ ⬤

Chung-Lu ⬤ ⬤ ◯ ◯ ◯ ◯ ◯ ◯ ⬤ ◯

Havel-Hakimi ⬤ ⬤ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯

Drawing ⬤ ⬤ ⬤ ⬤ ⬤ ◯ ◯ ◯ ⬤ ⬤

Table 4: Feature matrix for NetworKit and related network analysis software

20

7 Miscellaneous

Input/Output. As the primary file format for graphs, we support the format introduced by the graph
partitioning software Chaco and further popularized by METIS, which stores graphs with optional weights in
a simple text-based adjacency file. The collection of supported formats will be extended as needed.

Visualization. NetworKit includes basic graph drawing capabilities, implemented on the basis of matplotlib
and NetworkX. A major overhaul is due in a future release. A small example is shown below, a force-directed
drawing of the ”Les Miserables” character coappearance network, in which the node sizes are proportional to
betweenness centrality.

1 In [1]: L = readGraph("input/lesmis.graph")
2 In [2]: bc = centrality.Betweenness(L, True)
3 bc.run()
4 In [3]: viztasks.drawGraph(L, nodeSizes=[b * 1000 for b in bc.scores()])

Figure 4: ”Les Miserables” character coappearance network

7.1 Infrastructure

NetworKit is free software licensed under the permissive MIT License. As argued by Stodden [47], we chose this
license for the least amount of friction with respect to sharing and reuse of code in a scientific setting. We would
like to encourage usage and contributions by a diverse community, including data mining users and algorithm
engineers. The source code is distributed via a public Mercurial repository at http://algohub.iti.kit.edu/parco/
NetworKit/NetworKit. Write access for contributions is granted on request. The included documentation
provides support for setting up and getting started with NetworKit. General discussion (updates, support,
feature requests etc.) takes place on the open e-mail list networkit@ira.uni-karlsruhe.de.

21

7.2 History and Roadmap

NetworKit started as a collection of static community detection algorithms written in C++. It was first
released in March 2013. With version 2.0 the Python interface was introduced in November 2013. Version 3.0,
released in March 2014, experienced first of all several bug fixes and changes under the hood. New features
include fundamental graph and network analysis algorithms as well as network generators, many of which are
described in this document.

The package is under constant development while we aim for several releases per year. Features of upcoming
releases are divided into three categories. The first one includes further fundamental algorithms such as
network flow, basic support for spectral analysis and for layouting complex networks. This category also
comprises approximation algorithms for fundamental tasks such as betweenness centrality, so that huge
networks can be analyzed accordingly as well. The collection of graph generators is also going to be extended.
Secondly, we want to add algorithms for additional community detection scenarios such as selective, dynamic,
and overlapping. The third set of extensions concerns a showcase of semantics on an algorithmic level. While
the graph data structure provided by NetworKit already facilitates the inclusion of rich semantics, we want
to integrate such information in future algorithms and according case studies from application domains. In
another future release we want to support directed graphs as well.

Acknowledgements

This work was partially supported by the project Parallel Analysis of Dynamic Networks – Algorithm Engineering of
E�cient Combinatorial and Numerical Methods, which is funded by the Ministry of Science, Research and the Arts
Baden-Württemberg. A. S. acknowledges support by the RISE program of the German Academic Exchange Service
(DAAD).

We thank Maximilian Vogel for co-maintaining the software. We also thank Miriam Beddig, Stefan Bertsch, Andreas
Bilke, Guido Brückner, Patrick Flick, Daniel Hoske, Yassine Marrakchi, Florian Weber and Jörg Weisbarth for
contributing code to NetworKit.

22

References
[1] W. Aiello, F. Chung, and L. Lu. A random graph model for massive graphs. In Proceedings of the thirty-second

annual ACM symposium on Theory of computing, pages 171–180. Acm, 2000.
[2] R. Albert and A.-L. Barabasi. Statistical mechanics of complex networks. June 2001.
[3] J. Alstott, E. Bullmore, and D. Plenz. powerlaw: a python package for analysis of heavy-tailed distributions.

PLoS ONE, 9(1):e85777, 2014.
[4] F. A. Azevedo, L. R. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. Ferretti, R. E. Leite, R. Lent, S. Herculano-

Houzel, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up
primate brain. Journal of Comparative Neurology, 513(5):532–541, 2009.

[5] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large social networks: membership,
growth, and evolution. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 44–54. ACM, 2006.

[6] D. A. Bader and K. Madduri. Snap, small-world network analysis and partitioning: An open-source parallel
graph framework for the exploration of large-scale networks. Parallel and Distributed Processing Symposium,
International, 0:1–12, 2008.

[7] A.-L. Barabási and R. Albert. Emergence of scaling in random networks. 286:509–512, 1999.
[8] M. Bastian, S. Heymann, and M. Jacomy. Gephi: an open source software for exploring and manipulating

networks. In International Conference on Weblogs and Social Media, pages 361–362, 2009.
[9] V. Batagelj and U. Brandes. E�cient generation of large random networks. Physical Review E, 71(3):036113,

2005.
[10] V. Batagelj and M. Zaversnik. An O(m) algorithm for cores decomposition of networks. arXiv preprint cs/0310049,

2003.
[11] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn, and K. Smith. Cython: The best of both worlds.

Computing in Science & Engineering, 13(2):31–39, 2011.
[12] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks.

Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008, 2008.
[13] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex networks: Structure and dynamics.

Physics reports, 424(4):175–308, 2006.
[14] U. Brandes. A faster algorithm for betweenness centrality. J. Mathematical Sociology, 25(2):163–177, 2001.
[15] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski, and D. Wagner. On modularity clustering.

IEEE Trans. Knowledge and Data Engineering, 20(2):172–188, 2008.
[16] A. Clauset, M. E. Newman, and C. Moore. Finding community structure in very large networks. Physical review

E, 70(6):066111, 2004.
[17] A. Clauset, C. R. Shalizi, and M. E. Newman. Power-law distributions in empirical data. SIAM review,

51(4):661–703, 2009.
[18] L. d. F. Costa, O. N. Oliveira Jr, G. Travieso, F. A. Rodrigues, P. R. Villas Boas, L. Antiqueira, M. P. Viana,

and L. E. Correa Rocha. Analyzing and modeling real-world phenomena with complex networks: a survey of
applications. Advances in Physics, 60(3):329–412, 2011.

[19] G. Csardi and T. Nepusz. The igraph software package for complex network research. InterJournal, Complex
Systems, 1695(5), 2006.

[20] D. Ediger, K. Jiang, E. J. Riedy, and D. A. Bader. Graphct: Multithreaded algorithms for massive graph analysis.
Parallel and Distributed Systems, IEEE Transactions on, 24(11):2220–2229, 2013.

[21] D. Ediger, R. McColl, J. Riedy, and D. Bader. Stinger: High performance data structure for streaming graphs.
In High Performance Extreme Computing (HPEC), 2012 IEEE Conference on, pages 1–5, Sept 2012.

[22] C. Fiduccia and R. Mattheyses. A linear time heuristic for improving network partitions. In Proc. 19th ACM/IEEE
Design Automation Conf., pages 175–181, Las Vegas, NV, June 1982.

[23] J. H. Fowler, N. A. Christakis, Steptoe, and D. Roux. Dynamic spread of happiness in a large social network:
longitudinal analysis of the framingham heart study social network. BMJ: British medical journal, pages 23–27,
2009.

23

[24] U. Gargi, W. Lu, V. S. Mirrokni, and S. Yoon. Large-scale community detection on youtube for topic discovery
and exploration. In International Conference on Weblogs and Social Media, 2011.

[25] J. Gehweiler and H. Meyerhenke. A distributed di�usive heuristic for clustering a virtual P2P supercomputer. In
Proc. 7th High-Performance Grid Computing Workshop (HGCW’10) in conjunction with 24th Intl. Parallel and
Distributed Processing Symposium (IPDPS’10). IEEE Computer Society, 2010.

[26] M. Girvan and M. Newman. Community structure in social and biological networks. Proc. of the National
Academy of Sciences, 99(12):7821, 2002.

[27] A. Hagberg, P. Swart, and D. S Chult. Exploring network structure, dynamics, and function using networkx.
Technical report, Los Alamos National Laboratory (LANL), 2008.

[28] S. L. Hakimi. On realizability of a set of integers as degrees of the vertices of a linear graph. i. Journal of the
Society for Industrial & Applied Mathematics, 10(3):496–506, 1962.

[29] P. F. Jonsson, T. Cavanna, D. Zicha, and P. A. Bates. Cluster analysis of networks generated through homology:
automatic identification of important protein communities involved in cancer metastasis. BMC Bioinformatics,
7:2, 2006.

[30] A. Klaus, S. Yu, and D. Plenz. Statistical analyses support power law distributions found in neuronal avalanches.
PloS one, 6(5):e19779, 2011.

[31] A. Lugowski, D. Alber, A. Buluç, J. R. Gilbert, S. Reinhardt, Y. Teng, and A. Waranis. A flexible open-source
toolbox for scalable complex graph analysis. In Proceedings of the Twelfth SIAM International Conference on
Data Mining (SDM12), pages 930–941, April 2012.

[32] C. Magnien, M. Latapy, and M. Habib. Fast computation of empirically tight bounds for the diameter of massive
graphs. Journal of Experimental Algorithmics (JEA), 13:10, 2009.

[33] M. Newman. Networks: an introduction. Oxford University Press, 2010.
[34] M. E. J. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89:208701, Oct 2002.
[35] J. O’Madadhain, D. Fisher, S. White, and Y. Boey. The JUNG (java universal network/graph) framework.

University of California, Irvine, California, 2003.
[36] A. R. P. Erdős. On the Evolution of Random Graphs. Publication of the Mathematical Institute of the Hungarian

Academy of Sciences, 1960.
[37] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to the web. 1999.
[38] F. Perez, B. E. Granger, and C. Obispo. An open source framework for interactive, collaborative and reproducible

scientific computing and education, 2013.
[39] A. Pinar, C. Seshadhri, and T. G. Kolda. The Similarity between Stochastic Kronecker and Chung-Lu Graph

Models. Oct. 2011.
[40] U. N. Raghavan, R. Albert, and S. Kumara. Near linear time algorithm to detect community structures in

large-scale networks. Physical Review E, 76(3):036106, 2007.
[41] A. Sala, L. Cao, C. Wilson, R. Zablit, H. Zheng, and B. Y. Zhao. Measurement-calibrated graph models for

social network experiments. In Proceedings of the 19th international conference on World wide web - WWW ’10,
page 861, New York, New York, USA, Apr. 2010. ACM Press.

[42] T. Schank and D. Wagner. Approximating clustering coe�cient and transitivity. Journal of Graph Algorithms
and Applications, 9(2):265–275, 2005.

[43] J. Scott. Social Network Analysis - a Handbook. SAGE Publications, 2nd edition edition, 2000.
[44] M. A. Serrano, M. Boguñá, R. Pastor-Satorras, and A. Vespignani. Correlations in complex networks. Large

scale structure and dynamics of complex networks: From information technology to finance and natural sciences,
pages 35–66, 2007.

[45] C. L. Staudt and H. Meyerhenke. Engineering high-performance community detection heuristics for massive
graphs. arXiv preprint arXiv:1304.4453, 2013.

[46] C. L. Staudt and H. Meyerhenke. Engineering high-performance community detection heuristics for massive
graphs. In proceedings of the 2013 International Conference on Parallel Processing. Conference Publishing Services
(CPS), 2013.

[47] V. Stodden. Enabling reproducible research: Licensing for scientific innovation. Int’l J. Comm. L. & Pol’y, 13:1,
2009.

24

