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HYPOTHESES
The Wisdom of Networks: A General Adaptation and
Learning Mechanism of Complex Systems

The Network Core Triggers Fast Responses to Known
Stimuli; Innovations Require the Slow Network Periphery
and Are Encoded by Core-Remodeling
Peter Csermely*
I hypothesize that re-occurring prior experience of complex systems mobilizes
a fast response, whose attractor is encoded by their strongly connected
network core. In contrast, responses to novel stimuli are often slow and
require the weakly connected network periphery. Upon repeated stimulus,
peripheral network nodes remodel the network core that encodes the
attractor of the new response. This “core-periphery learning” theory reviews
and generalizes the heretofore fragmented knowledge on attractor formation
by neural networks, periphery-driven innovation, and a number of recent
reports on the adaptation of protein, neuronal, and social networks. The
core-periphery learning theory may increase our understanding of signaling,
memory formation, information encoding and decision-making processes.
Moreover, the power of network periphery-related “wisdom of crowds”
inventing creative, novel responses indicates that deliberative democracy is a
slow yet efficient learning strategy developed as the success of a billion-year
evolution. Also see the video abstract here: https://youtu.be/IIjP7zWGjVE.
1. Introduction

Complex systems often include a substantial number of
components (referred to as nodes in their network representa-
tion). In case of random networks a large number of nodes
would make the formation of system responses extremely slow
and inefficient. To solve this problem, real-world networks often
develop a network core that contains a few, densely connected
nodes. The majority of nodes form the network periphery.
Peripheral nodes are preferentially connected to the core, and are
only sparsely connected to each other.[1–3] Network cores enable
the development of fast and efficient responses (Box 1).[4]

The response-set of a complex system is encoded by its
attractors. Attractors are defined states, in which the complex
system converges.[5,6] In 1969, Stuart Kauffman described that
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random genetic control networks develop
a surprisingly small number of attrac-
tors.[5] Recent studies indicated that
rather few attractors represent the char-
acteristic responses of a wide variety of
complex systems including proteins,[7,8]

cells,[9–12] neuronal[13–15] and social
networks.[16,17]

Following the early work of Little,
Shaw,[18,19] and Hopfield[20] numerous
studies of a rapidly growing field showed
that learning processes of artificial
intelligence networks lead to the devel-
opment and consolidation of their
attractors.[21] However, we know still
surprisingly little about the mechanisms
how biological networks encode new
attractors as their responses to a novel
challenge. From the 1980s a number of
social science findings supported that
creative innovations are often generated
by the social/geographical network periphery, and core-
periphery interactions play an essential role in their
implementation.[22–27] Recently several lines of evidence
related to protein structures, metabolic, signaling, neuronal,
ecological and social networks have indicated that fast
responses to known stimuli involve the network core,
which drives the system to one of its attractors (see
Section 2).[3,9,11,16]

From the above findings the following system-adaptation
mechanism emerged. If the system experiences a novel
challenge, the network core may fail to provide a coherent
response; thus, the stimulus propagates to the periphery of the
network. The novel response requires a substantial number of
weakly connected peripheral nodes. If the novel challenge is
repeated, the periphery remodels the core, and develops a new
attractor. Core-remodeling may weaken or erase former
attractors leading to “forgetting.” However, the substantial
knowledge supporting this mechanism remained fragmented
(see Section 2).[1–27] In this paper, I hypothesize that the above
“core-periphery learning” response schema acts as an adapta-
tion and learning mechanism of all complex systems, and will
describe several potential ways of the development of novel
system attractors.
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Box 1. Definition and properties of the
network core and periphery

The network core refers to a central and densely
connected set of a few network nodes, where connection
density is often increased further by large edge weights.
In contrast, nodes of the network periphery are non-
central, sparsely connected, and attach preferentially to
the core.[1–3] Rich-clubs represent interconnected hubs,
which may form a part of the network core.[2] Importantly,
the strongly connected component of directed networks
(where every node is reachable from every other node) is
the mathematically defined core of their bow-tie
structures. The mathematically precise definitions of other
core concepts are listed in Ref.[3] The core of modular
networks is composed of multiple, densely connected
regions.[3] Both single and multiple network cores have
been shown to stabilize complex systems by the early
work of Robert May.[4] The network core provides a
plausible structure to store previously encoded system
responses because it is central and easily approachable,
yet simultaneously shielded from the environment by the
network periphery. Core-shielding is evident in protein
structures where the network core is the physical core of
the protein that contains hydrophobic amino acids and is
shielded from the surrounding water by the peripheral
amino acids. Shielding of signaling and neuronal
networks protects them from over-excitation by prolonged
stimuli. Moreover, super-influential members of the social
elite tend to shield themselves from direct public
influence by imposing tight control of their appearances
in publicly open situations. Besides core-shielding, the
preservation of system responses is helped by the
evolutionary conservation of network cores, since the
dense connections of the core impose a set of system-
constraints. Notably, this set of system-constraints is
exactly the information the core has preserved when the
system’s optimized attractor repertoire was set by
previously encountered situations.
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2. Examples of System Response Duality to
Well-Known versus Novel Environmental
Changes

Prior to describing the core-periphery learning hypothesis of this
paper in detail, I first list a set of salient examples that indicate
the duality of previously encoded versus newly acquired system
responses.
2.1. Protein Structures

Proteins may be described as residue interaction networks,
where nodes are amino acids and network edges connect
adjacent amino acids in the 3D protein structure. The core of
protein structure networks is enriched in hydrophobic amino
acids.[3] Importantly, the network periphery often contains
BioEssays 2017, 1700150 1700150 (2
intrinsically disordered protein segments, which occur in 85% of
human regulatory proteins.[28,29]

The protein core provides an exceptionally fast energy-
transfer, which is localized to a few key amino acids as
demonstrated by experimental findings, molecular dynamic
simulations and analysis of evolutionary conserved sequen-
ces.[30–37] The protein core is tightly packed, where conflicting
constraints and forces lead to the “frustration” of several amino
acid residues.[38] Analysis of frustration and rigidity changesmay
help the identification of core segments mediating the fast
transmission of well-known environmental changes in protein
structures.[39–41] Allosteric activation often induces inter-micro-
domain coupling, which expands the protein core and makes
overall energy transfer faster and more efficient.[7,37,42] Thus
allostery introduces an “on-line” sensor of “well-known”
environmental changes.[8]

The example of proteins is somewhat special, since protein
responses to well-known environmental changes were developed
by evolutionary selection processes long time ago. However,
peripheral, intrinsically disordered segments enable the fast
adaptation of proteins to environmental changes. Disordered
segments often fold upon binding to the upstream signaling
partner, allowing “conformational signaling” as exemplified by
the nuclear hormone receptor family and the cAMP response
element-binding protein (CREB) among many others.[29]

Folding of intrinsically disordered segments often occurs in
the range of seconds,[43] which is much slower than either the
picosec time-scale[30,32,37] of protein core-mediated signaling, or
the nsec to msec timescale of conformational changes.[29]

Conformational memory gives yet another example of
environment-induced protein dynamics. E. coli lactose permease
displays a lipid-induced conformational change, which
remained detectable well after the removal of the lipid.[44]

Similarly, human glucokinase,[45] or the ATP binding cassette
transporter, BtuC2D2,

[46] retained a hyper-activated state long
after the completion of their catalytic cycle. These kinetic forms
of allosterymay represent a general feature of many proteins that
was introduced as allokairy.[47] Self-templating conformations of
prions and an increasing number of other, intrinsically
disordered, evolutionarily conserved proteins induce heritable
traits.[48] In addition, prion-like proteins were first hypothe-
sized,[49] and were subsequently shown to be involved in the
memory storage of neurons.[50,51]

In summary, protein cores show a fast and evolutionarily
optimized signal transmission concentrated to a few amino
acids. On the contrary, peripheral, intrinsically disordered
protein segments provide a wide range of slower responses
including their upstream-signaling partner-induced folding and
conformational memory.
2.2. Metabolic and Signaling Networks

Metabolic networks are the network representation of cellular
metabolism, in which enzyme proteins are the edges and their
substrates are the nodes. The minimal gene set-related,
evolutionarily conserved core and the environment-dependent
periphery of metabolic networks[9,52,53] exhibit a very similar
duality to that observed in protein structures. This network
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structure stabilizes metabolic attractors, which are correctly
recovered after a matching input.[9]

Cellular signaling network states also converge at attractors,
which are re-configured after environmental changes.[5,10–12,54]

Importantly, cell differentiation may be modeled by the
activation of core gene expression processes, which drive the
shift between the major attractors of progenitor and differenti-
ated cells. In addition, a substantial number of transient,
peripheral gene expression processes capture the pathways and
responses specific to the actual input.[54]

Both metabolic and signaling networks can be reconfigured
by signal-directed folding of intrinsically disordered pro-
teins,[29] as well as by chromatin-related, epigenetic learning
mechanisms providing an enhanced response after a repeated
stimulus.[55–57] It requires further studies, whether these
direct and indirect “learning” processes preferentially modify
network peripheries, as expected. Our current knowledge on
previously encoded and newly formed responses of protein
structure, metabolic, and signaling networks is summarized
in Table 1.
Table 1. Comparison of previously encoded and newly formed responses o
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2.3. Neuronal Networks: Connectomes

This set of examples will describe the responses of neuronal
networks to well-known and novel stimuli. Nodes of neuronal
networks (connectomes) are neurons. Inter-neuronal edges are
primarily provided by synapses.

In pyramidal, place sensing neurons of the rat hippocampus
several highly active, fast-firing neurons are surrounded by
neurons that are less active and slower. Fast neuronal matching
is often imprecise, which increasingly occurs, when the rat
experiences new locations. In this latter case, spatial map
refinement by the giant, weakly connected network of most
neurons becomes particularly important.[58] Importantly, a
smaller subset of slow-firing, plastic cells gains high place-
specificity during exploration and exhibits increased bursting
and co-activation during post-experience sleep.[59] Thus, plastic
neurons involved in the precise encoding of novel stimuli
become similar to the rigid neurons that encode previous
information. Similarly, an enriched environment sensitizes
mouse dentate gyrus granule cells, which enables their fast
f various complex systems.
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conversion to highly excitable and tightly connected network
cores that encode new information.[60] Similar core-periphery
task differences could be observed in several other neuronal
structures as shown below:
1.
BioE
A substantial part of rat motor cortex may belongs to the
giant, weakly connected network periphery involved in
learning novel motor tasks. In contrast, motor cortex lesions
had no discernible effect on previously acquired motor
skills.[61]
2.
 Task-relevant visual areas exhibited a higher-than-average
topological proximity to the network core in a relatively low
resolution functional magnetic resonance imaging analysis
of human brains. The core-association of task-relevant visual
areas was further increased during correct visual task
solutions.[62]
3.
 The core of 34 mushroom body output neurons (a locus
where the 2000 Kenyon cells of the Drosophila olfactory
system converge) encoded various odors in a highly
correlated manner. In contrast, the peripheral layers of
sensory input remained highly decorrelated.[63]
4.
 As a final, and perhaps most convincing example, sensitiza-
tion of the escape swim of the marine mollusk, Tritonia
diomedea recruited peripheral neurons to the reliably
bursting neurons of the network core, which increased the
vigor of the elicited swim response.[64]

Memory retrieval provides an excellent example for the
mobilization of a previously encoded response by a “well-
known,” re-occurring situation. A recent study has indicated that
repetitive activation of the visual cortex of awakemice built newly
developed, stable neuronal core structures that were mobilized
together after being imprinted.[65] Similarly, a core of several
highly correlated, hub-like neurons was formed during the
mouse fear memory learning process. In fear memory retrieval,
core neurons tended to lead their correlated neuron pairs in the
network periphery, which resulted in network-wide synchronous
events. This finding indicated that the neuronal network core
acts as an ‘opinion leader’ initiating responses to known
stimuli.[66]

Going beyond structural findings on neuronal networks
Daniel Kahneman described[67] that fast thinking determines our
own actions if we encounter a familiar situation. However, if an
event occurs that violates the model of the world encoded by our
fast thinking neuronal system, the slow, contemplative, “deep”
thinking system becomes activated, which enables more detailed
and more specific processing. This division of labor is highly
efficient in minimizing effort and maximizing performance. In
the initial phase of the response fast and slow thinking often
complement each other. The fast opinion is implemented if
immediate action is needed, while preparing a slow, deep
thinking solution as the refinement.[67] This description
summarizes a massive number of behavioral studies. Examina-
tion of the role of whole-brain connectome core and periphery in
fast and slow thinking processes will be an exciting task of future
studies.

In conclusion, a substantial number of corroborating
findings[58–67] suggests that memory is encoded by the extension
ssays 2017, 1700150 1700150 (4
of a fast-responding network core of correlated neurons that
recruit and activate neurons from the network periphery. In
memory retrieval processes the previously formed core reacts
first and elicits a general response of the periphery. Notably, the
relatively small number of peripheral neurons involved during
memory formation[59,60,64,66] may reflect current experimental
limitations because it is a daunting task to obtain individual
records of a substantial number of weakly connected/correlated
neurons, whose sporadic activation by a novel situation may
precede the recruitment of a limited number of peripheral
neurons to the network core.
2.4. Ecosystems

The general and specific resilience of ecosystems against
previously experienced versus novel changes[68,69] indicates a
highly similar response duality to the changes described in the
previous sections. As an interesting example during the
continuous reconfiguration process of an arctic seasonal
pollinator community, a high ecosystem structural stability
was reached via the incorporation of the continuous flow of
newcomer species to the network core.[70]

Importantly, recent work on ecosystem evolution showed that
a memory of the phenotypes that have been selected in the past
can facilitate faster adaptation, whenever these phenotypes are
selected again in the future. Moreover, ecosystem memory can
also facilitate faster adaptation to new challenges by recombina-
tion of previously learned solutions.[71]
2.5. Social Networks

Finally, I describe the decision-making mechanisms of social
networks. Well-known individuals often know each other
forming a tightly connected network core. The core gives fast
responses to previously occurring situations but often forms
echo-chambers resulting in a significant confirmation bias. In
contrast, the network periphery provides a wider range of
solutions than the core and can overturn suboptimal choices of
the social “elite” (Box 2).[3,72–77] This core-periphery behavior
underlies the importance of 1) the expansion of the definition of
expertise; 2) creation of a culture, that is truly receptive to new
ideas, and 3) the empowerment of opportunity scouts.[78] The
weakly connected majority of the network periphery has a key
role in the collective opinion of James Surowiecki’s proverbial
Wisdom of crowds.[76] Thus, the development of the optimal
response requires the contemplative thinking of the entire
community that uses the inclusive, self-governing and citizen-
powered processes of deliberative, slow democracy.[79,80]

In conclusion, the wide range of examples listed in this paper
(Table 1) strongly suggests that the development of novel,
optimal responses requires the contribution of the whole
community. Importantly, this can not be perceived only as the
vote of the majority, especially, if votes were casted without a
previous extensive discussion of the subject, but were based on
simplified slogans or ‘identities’. The process of deliberative
democracy raises the ‘crowd’ to the level of experts, which is in
© 2017 WILEY Periodicals, Inc.of 11)
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Box 2. Roles of the “elite” and the
“wisdom of crowds” in decision-
making processes

The core-forming elite may trigger and lead an efficient
and fast response of the entire community if the
challenge was previously experienced and/or trivial. In
contrast, after a novel, unexpected challenge, the
development of an adequate response requires the
variability of the flexible majority of the network periphery,
i.e., the “wisdom of crowds.”[3,72–77] Several examples
demonstrate this duality. Even in chacma baboon groups
routine group movements are driven by the network
core.[72] The small Twitter network core produces the
majority of tweets, which are characterized by mobilizing,
polarized political views. In contrast, tweets of the
periphery reflect “contemplative,” politically more
moderate views.[73] In the widely used voter model the
“wrong” (i.e., less preferred) opinion of the “top-leader”
of a directed, perfectly hierarchical tree network was
overturned by the “right” (more preferred) public opinion
– as distant network nodes became connected.[74] The
increase of randomness also reduced the appearance of
“extremism” and increased “deliberative thinking” in a
different model of collective opinion formation.[75]

Furthermore, the effects of highly confident, core-type
individuals and the majority of laypeople have been
shown to act as the two major attractors of a group’s
opinion in controlled experiments.[16] The “wisdom of
crowds”[76] has been further demonstrated by examples of
“human computation,” in which an extensive number of
participants worked independently with rules encouraging
the generation of new insights.[77]
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agreement with Plato’s ideas on a well-functioning
democracy.[81]
3. The Core-Periphery Learning Hypothesis:
Known Stimuli Trigger Fast Responses of the
Network Core, Whereas the Development of
Novel Attractors Requires the Network
Periphery

From the wide range of examples described in Section 2 (for a
summary, seeTable1), adual response-patternof complex systems
emerges. Generalizing this pattern, here I describe the develop-
ment of novel attractors as the hypothesis of the current paper.

As a starting step, the stimulus reaches the network core in a
fast process as shown by the red nodes on Figure 1 and by the
illustrative videos in the Supporting Information.[82–85] This is
expected, because core nodes typically have a substantially
higher number of neighbors than other nodes, and are
connected with edges that have a large weight (solid lines of
Figure 1; Box 1). After this starting step one of the following
three scenarios may happen.
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3.1. Scenario 1: Shift to an Attractor Encoded by Previously
Encountered Situations

As key findings supporting my hypothesis several recent
publications proved that the node sets (called as stable motifs
or feedback vertex sets)[86–90] that determine system attractors
are part of the strongly connected components of directed
networks (where every node is reachable from every other node).
The strongly connected component is, in fact, the mathemati-
cally defined core of bow-tie networks (Box 1). These studies
showed that 1) core nodes play a major role in encoding system
attractors; 2) different attractors may be encoded by overlapping
subsets of core nodes; and 3) not all core nodes are participating
in attractor-encoding.[14,86–90] Since the initial form of my
hypothesis was published as a preprint,[91] several other
supporting findings have appeared[59,60,64,65,70,72,90] that support
and extend the original concept. Taking the above studies and the
list of examples before together, I generalize the following
scenario.

If the incoming stimulus had been experienced by the
complex system several times before, a set of core nodes have
formed a group, which drove the system to an attractor giving an
adequate response to the stimulus. If now the same stimulus is
repeated again, the system is driven to this attractor (Figure 1A).
This provides a fast, reliable, and robust response (for time
scales, see Table 1).

Peripheral nodes (forming the “in“ and “out“ components of
bow-tie networks) may refine the form and size of the attractor
basins but may not influence the number of attractors. (Please
note, that here the attractor may also be a set of fixed points, a
limit cycle, or a limit torus.)
3.2. Scenario 2: System Response to Novel Situations

If the stimulus originates from a novel, unexpected situation
(Figure 1B) it may be incompatible with the existing attractors set
by the core. Thus, the stimulus may provoke conflicting core
responses inducing the system to fluctuate between its original
attractors. Here the stimulus propagates to the majority of
weakly linked peripheral nodes, which stabilize the system.
Besides system stabilization peripheral node involvement
enables the emergence of slow (yet creative) responses to the
novel stimulus as the ‘collective decision’ of (practically) the
entire network (for time scales, see Table 1). This process may
modify the position, size, saddles or depth of the complex
system’s attractor basins. Note, that the emergent periphery-
response is slow not only because the re-organization of the
periphery is requiring a large number of rather slow, stochastic
steps (as detailed in Section 4), but also because stimulus-driven
periphery reorganization must often be attempted hundreds (if
not thousands) of times before finding a new, adequate response.
3.3. Scenario 3: Encoding a Novel System Attractor

In case the novel stimulus is repeated (many times), the
peripheral network nodes, which were involved in “Scenario 2,”
© 2017 WILEY Periodicals, Inc.of 11)
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Figure 1. Description of the core-periphery learning mechanism of complex systems. The stimulus is rapidly concentrated at the rigid core of the
network (red nodes) as a result of the core’s central position and large weight edges (solid lines). A) Scenario 1. The stimulus (yellow arrow) is compatible
with a previously set attractor of the complex system encoded by a subset of the core nodes (horizontal red double arrows) and provokes a fast, matching
response (solid line yellow double arrows), which transfers the system to this pre-set attractor. B) Scenario 2. The stimulus is incompatible with previously
set attractors of core-nodes (red) provoking a fluctuation between attractors (red double arrows). Consequently, the stimulus is spread to the network
periphery (green nodes), and induces a slow, system-level, integrative response (dashed line yellow double arrows). Here, a collective decision of the entire
network emerges. C) Scenario 3. Repeated stimuli reconfigure the core (red nodes) encoding a new system attractor (solid line yellow double arrows).
Overlapping subsets of core nodes may encode/connect multiple attractors.[14,86–90] The emergence of fast and slow responses is also illustrated by
three pairs of videos in the Supporting Information on an illustrative network of neurons, as well as the real world social networks of network scientists[82]

and high school students.[83]
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may gradually reconfigure the network core adding nodes to it,
or exchanging its nodes (Figure 1C). This process encodes the
newly acquired response as a novel attractor of the system. Core-
reconfiguration may weaken or erase some of the earlier system
attractors and thus may also serve as a ‘forgetting’ mechanism.

This core-periphery learning hypothesis is novel, since it
connects previously fragmented knowledge on the capability of
model networks to develop system attractors in learning
processes[18–21] on network periphery-generated creative inno-
vations[22–27] and on the differential role of core and periphery
nodes in attractor formation in a large variety of real-world
networks.[3,9,11,16,29–90] Moreover, the hypothesis expands these
lines of evidence to a general adaptation and learning
mechanism of complex systems.

The rigorous proof of several details of the above three
scenarios requires additional studies. As an extension of the
core-periphery learning hypothesis I will detail the potential
mechanisms of Scenarios 2 and 3 (development and encoding
of novel system responses) in the next section. Limitations,
several possible further proofs and potential applications of the
BioEssays 2017, 1700150 1700150 (6
hypothesis will be described in subsequent sections of this
paper.
4. Development and Encoding of Novel
Complex System Responses as Potential Ways
of Adaptation and Learning

What is the mechanism of the formation and consolidation of
new system-responses? How do ‘creativity’, ‘deep thinking’,
‘contemplation’ and ‘deliberation’ emerge in biological systems?
How are optimal responses encoded to the complex system’s
network so they may be efficiently retrieved later? As the
extension of the core-periphery learning hypothesis described in
the previous section, here I seek answers to these questions and
describe potentially general, system-level adaptation and
learning mechanisms.

One of the most persuasive learning mechanisms involves the
increase of synaptic strength between neurons.[50] Importantly,
this Hebbian learning rule is related to the network core
© 2017 WILEY Periodicals, Inc.of 11)
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reconfiguration of “Scenario 3”: if an edge-weight increases as the
systemencodesanovel response, thenodes thatbelong to thisedge
may become a part of the reconfigured network core connected by
high-weight edges (Box 1). Notably, neuronal learningmay involve
several mechanisms other than the increase of synaptic strength,
suchaschanges inburstingbehavior, excitability or thestructureof
perineuronal nets.[50,65,92,93] In addition, stimulus-mediated edge
weight increases of signaling ormetabolic networks have not been
fully established yet, butmay involve signaling-induced folding of
intrinsically disordered protein regions[29] or epigenetic memory-
related learning mechanisms providing an enhanced response
after a repeated stimulus.[55–57] Edge-weight remodeling re-
channels the information flow in a network. Re-channeling
appears tobe applicable as a general learningmechanismandmay
involve several cases as subsequently described.
Box 3. A potential mechanism that
changes the direction of a network
edge

As described in the main text, changing the direction of
even a single network edge may re-channel the network
information flow and change the system behavior.[100] 1)
How is the edge-direction formed in nature? The
“induced-fit” mechanism of protein interactions, in which
the more rigid partner influences the less rigid partner,[8]

provides a rather plausible rationale of edge-direction
formation. Note that this edge-direction definition
remains valid if we perceive rigidity as functional
rigidity,[39] which indicates that the less rigid node (which
is, in most cases, a complex system itself, such as a
single neuron in neuronal networks) has a substantially
higher number of attractors than the more rigid node.
Thus, the less rigid node, having more attractors, has
much greater chances of accommodating itself to the
actual status of the more rigid node than vice versa. In
case the more rigid node ‘melts’, i.e., decreases its
rigidity below that of the less rigid node, the direction of
the edge becomes reversed. 2) How can the more rigid
node be ’melted’? This may be achieved by a
concentration of energy on the more rigid node, which
may re-arrange its inner structure in a way that it
becomes more random, noisier, or more plastic. This
assumption is plausible because increased resources lead
to increased randomness of network structures,[101] which

[39,41]
4.1. Re-channeling of Information Flow by Connecting
Distant Network Regions Using Creative Nodes

A drastic re-channeling of information flow may be achieved if
re-channeling connects formerly ‘quasi-distinct’ regions of the
complex system’s network. These regions must reside in the
sparsely connected network periphery (and not in the densely
connected core). Highly dynamic, weakly linked nodes that
connect various distant network regions have previously been
termed “creative nodes.”[94] Creative nodes bridge the “structural
holes“ of Ronald Burt.[95] Various forms of creative nodes in
different networks are listed in Table 1. The increase of creative
node edge-weights may be a particularly suitable method to
remodel system attractors. Henri Poincar�e defined creativity as
connecting distant regions of human knowledge as follows: “to
create consists in not making useless combinations.... Among chosen
combinations, the most fertile will often be those formed of elements
drawn from domains which are far apart”.[96] In agreement with
this statement, an analysis of 17.9 million scientific papers
showed that highest-impact papers feature an intrusion of
unusual combinations.[97] In recent social experiments and
simulations, the accumulation of high-complexity innovations
required both the separation and occasional connection of
distant groups resulting in creative combinations.[77] In an
extensive study of Facebook comments, significantly greater
attention was triggered by messages that combined themes
seldom discussed together. These “cultural bridges” often
induced new conversational themes that acted as “cultural
trellises”.[98] Similarly, Wikipedia users prefer links pointing
towards the periphery of the Wikipedia network[99] indicating a
search for novelty not in the redundant core, but in the non-
redundant periphery. These findings regarding creativity are in
agreement with the re-channeling of information flow by
connection of the distant network regions described here.
causes their increased plasticity. 3) How does the
energy received by the network become concentrated on
the more rigid node? Observations of protein structures
have indicated that the energy tends to accumulate at the
most rigid segments of the protein.[36] This is plausible,
since rigid segments preserve and transmit signals better,
whereas plastic segments dissipate them better.[39–41]
4.2. Re-channeling of Information Flow by Changing Edge
Directions

Information flow can be efficiently re-channeled by changing the
direction of even a single edge. This little change may drive the
BioEssays 2017, 1700150 1700150 (7
system from a hierarchical control by a limited number of nodes
to a community-control by themajority of nodes.[100] This duality
is closely related to the core-periphery duality of the previously
described response pattern. Edge-direction change may be
triggered by the decrease in the rigidity of the more rigid node
(Box 3).[101] Importantly, change in the direction of an edge may
introduce loops in directed networks. This may dramatically
increase their plasticity, and may destabilize/reconfigure their
former attractors.[102]
4.3. Re-channeling of Information Flow by Core Remodeling
as a Way to Encode New Attractors

Finally, I will describe three mechanisms that remodel the
network core and encode novel attractors. Importantly, core
remodelingmay also erase part of the previously encoded system
responses (attractors), which may thus also be a mechanism of
forgetting and consequent system reset.
© 2017 WILEY Periodicals, Inc.of 11)
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4.3.1. Mechanism of Network Core Remodeling 1: Core-
Conflict Mediation by “Creative” or “Innovator” Nodes

In case of a novel stimulus, core nodes often trigger different
responses. Contradicting responses induce a fluctuation
between previously encoded attractors. Here, ‘mediation’ of
contradicting core responses becomes useful. This ‘mediation’ is
often provided by core-adjacent, non-hub nodes. Species of the
schooling fish, Notemigonus crysoleucas with relatively few, yet
strongly connected, neighbors were both most influential and
most susceptible to social influence.[103] The high influence of
inter-hub nodes was also demonstrated in large-scale social
networks of Twitter or mobile phones.[104] Notably, mediating
nodes often have weak links that resemble to those of the
“creative nodes” previously described.[94] Thus, core-conflict
mediation may contribute to the stabilizing “strength of weak
ties” initially described for social networks by Mark Granovet-
ter[105] and subsequently generalized to many complex
systems.[106]

In the concept of innovation diffusion mediator nodes
correspond to “innovators” (bridges, brokers). Here, the opinion
leader, socially integrated “early adopters” predominantly belong
to the highly active network core.[23,27] Creative innovations are
often generated by the network periphery.[22,24,25] The network
periphery is a preferred position of innovators because they may
have contacts here with other social communities and may be
free from the social pressure of core-enforcing conformity.
Importantly, external advisors, consultants and change agents
typically occupy the position of the hub-connecting, core-
interacting, low-degree nodes, which partially explains their
highly influential status. Core-members are typically afraid of
changing the status quo, which may jeopardize their prestigious
position. Thus, traditionally behaving core members seldom
become innovators.[23,27] Importantly, core-periphery interac-
tions play an essential role in the spread and implementation of
innovations.[25,26]
4.3.2. Mechanism of Network Core Remodeling 2: Core-
Reconfiguration by Addition and/or Exchange of Core Nodes

Repeated stimuli may transform core-mediation to core-
reconfiguration, in which core-associated, mediating nodes
become part of the core that encodes the novel re-
sponse.[59,60,64,65] The core may also lose some of its previous
nodes during reconfiguration, as shown in neuronal and social
networks.[3,64] These examples indicate that core-reconfiguration
may induce the weakening/erasure of former system responses
during the encoding of a novel attractor. Thus, core-reconfigu-
ration also represents a forgetting mechanism.
4.3.3. Mechanism of Network Core Remodeling 3: Core-
Melting

A mismatched stimulus may also ‘melt’ (and thus erase) part of
the core by a decrease of its edge weights and rigidity.[39,41]

Increased plasticity helps to generate novel attractors and/or
makes existing attractors accessible. If the mismatched stimulus
BioEssays 2017, 1700150 1700150 (8
is repeated itmay encode a novel set of constraints to the network
structure establishing a new segment of the network core. This
core-extension makes the network more rigid again. These
plasticity/rigidity cycles characterize a wide range of adaptive
processes.[40,41] Similarly to core-remodeling discussed in the
previous paragraph core-extension (resembling to the ‘election
of new leaders’) may also enrich the system with a newly
encoded attractor.

Importantly, ‘core-melting’ may represent a key mechanism
of forgetting. The slow relaxation of high-affinity, high-turnover
protein conformations after the dissociation of the substrate[45–
47] is a molecular-level model of forgetting. A similar decrease in
the network rigidity may induce forgetting at the structure of the
actin cytoskeleton in neuronal synapses,[107] as well as at the
perineuronal net.[92]

The above three mechanisms (core-mediation, core-recon-
figuration and core-melting) indicated that minor changes in
the network core may lead to gross changes in network
behavior. This is rather plausible because the core often
determines the major system attractors. However, the network
periphery may remodel attractor basins, make attractors
accessible or inaccessible, merge two attractors or divide a
large attractor basin to several smaller ones. In case of repeated
stimuli, these periphery effects may reconfigure the core and
encode novel attractors.

These examples showed that learning mechanisms can be
extended from neuronal networks to other complex systems,
such as protein structures (especially those of intrinsically
disordered proteins), metabolic networks, ecosystems and
social communities. This assumption is in agreement with
the recent concept of Watson & Szathmáry,[71] who described
the evolutionary adaptation of ecosystems as a learning
process.
5. Limitations, Potential Proofs and
Applications of the Core-Periphery Learning
Hypothesis

This section will list the limitations of the core-periphery
learning hypothesis giving a few exceptions of the general
adaptation mechanism described in this paper. However, as
evidenced by the salient examples listed before, these exceptions,
by far, do not represent the majority of cases.
1.
of
Importantly, the speed of response itself may not always
discriminate core or periphery (formerly encoded or newly
learned) responses. Responses may become slow either
because the stimulus removed the system far from its
corresponding attractor, or because the formation of its
corresponding attractor requires a long time. However, the
latter process usually requires even longer time that the
former, since periphery reconfiguration is stochastic and
requires many repeats (see Table 1).
2.
 In some emergency scenarios, complex systems may adapt
with an initial, approximate, mismatched, yet fast response of
their core, which subsequently becomes refined by the slower
contributions of the periphery.[67] Important scenarios of this
response are, when the system remains fluctuating in a
© 2017 WILEY Periodicals, Inc.11)
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Box 4. Potential proofs to support (or to
rule out) the core-periphery
learning hypothesis

Here I list some experiments that may give further
support for the core-periphery learning hypothesis
described in this paper (or may highlight its limitations
beyond those listed in Section 5 of the main text).

1. Detailed kinetic studies of signaling-induced folding of
intrinsically disordered protein segments should reveal
their conformational memory remaining transiently
folded after dissociation from their partner, and thus
sensitizing the cellular response to a repeated stimulus.

2. Intrinsically disordered proteins should be enriched in
the periphery of signaling networks (as opposed to their
core).

3. Signaling responses to well-known and novel stimuli
have not been readily discriminated yet. This is partially
due to an experimental bias, since we usually expose the
cell to a single stimulus. Future experiments that add
‘previously-experienced’ or novel ‘cocktails’ of hor-
mones, cytokines, etc. and measure system-wide
signaling responses may allow the discrimination of
core- and periphery-centered signaling.

4. I expect a lot more studies revealing “intergenerational
memory” of cellular signaling and metabolic responses
than the pioneering paper of Doncic et al.[117] and the
initial findings on epigenetic memory.[57]

5. The refinement of neuronal techniques may provide
additional evidence for the key role of weakly connected,
peripheral neurons[59,60,64,66] in the development of
novel neuronal responses.

6. Whole-brain connectome studies should reveal that fast
and slow thinking processes[67] are related to the
connectome core and periphery, respectively.

7. The differences between network core- and periphery-
induced ecosystem reconfigurations are largely unex-
plored. Future studies should reveal more connections
between ecosystem network cores and ecosystem
memory.
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bistable switch (such as the optical illusion of the Necker
cube) in a limit cycle or a limit torus.
3.
 Some ‘simple’ systems, such as protein structures lacking
intrinsically disordered regions, may not be able to ‘learn’
novel responses. However, they reflect the constraints of
previous evolutionary selection steps.
4.
 Highly specified, engineered networks may often lack
adaptive responses.
5.
 Core/periphery fluctuations may occur in some of those
neuronal and social networks that display a high
plasticity.[3,41,64]
6.
 The “wisdom of crowds”[76] may be converted to the
“madness of crowds”,[108] thereby leading to widespread
popular delusions. Creative nodes[94] may prevent these
ssays 2017, 1700150 1700150 (9
catastrophes. Various forms of the "madness of crowds"
phenomenon and creative nodes are listed in Table 1.

Several limitations of the core-periphery learning hypothesis
are, actually, its extensions.
1.
of
In some cases, the core may have an excessive number of
constraints. This extreme core rigidity severely limits the
core’s portfolio of fast responses. These super-rigid coresmay
reject most stimuli and may appear ‘purposefully slow’,
similar to bureaucracies.
2.
 The core may have multiple segments (Box 1). As an example
of the functional utility of a dissociated network core forming
network modules, the interconnection of brain modules has
been identified as a key process of human cognitive
functions.[109]
3.
 Learning may proceed in repeated cycles with varying
contributions of distant network segment reconnections,
edge reversals and core remodeling.[39,41]

Potential proofs that may support (or may rule out) the core-
periphery learning hypothesis are listed in Box 4. The dual
adaptive mechanism described in this paper contributes to our
understanding of signaling, learning and decision-making
processes. Innovations resembling to core-periphery remodel-
ing[110–112] may overcome the overfitting, slow convergence,
“fooling effect” and catastrophic forgetting of several current
artificial intelligence techniques. Recent Internet innovations
recognize the importance of Internet periphery to adapt to
variable challenges[113] and involve the design of an adaptable
Internet core.[114] Finally, network-based drug design has
recently emerged as a novel paradigm of drug development.[40]

While the “central hit drug design strategy” targets the network
core,[40] the “network influence drug design strategy” targets
peripheral nodes,[40] preferably hitting those nodes that are
similar to the highly susceptible, highly influential, hub-
connecting, core-adjacent nodes described in this paper.
6. Conclusions

In conclusion, a wide range of evidence indicates that upon an
environmental stimulus complex systemsmobilize a fast, pre-set
response of their well-connected network core shifting the
system to one of its attractors. If this fails, the stimulus
propagates to the weakly connected network periphery, and a
slow, integrative response of the entire system develops. In case
of repeated stimulus this integrative response may remodel the
network core and encode a novel attractor. Thus, a wide range of
natural systems mobilize their network periphery and initiate a
process similar to ‘deliberative, deep thinking’ when creating
novel responses. Further studies on core- and periphery-driven
responses will give more insight into adaptation and learning
mechanisms, as well as construct more efficient future
technologies.

The generality of the “wisdom of crowds” described by the
core-periphery learning hypothesis here indicates that deliber-
ative democracy is an efficient learning strategy optimized by
complex systems as response to unexpected situations in
© 2017 WILEY Periodicals, Inc.11)
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billion-years of evolution. The 21st century is full of novel
situations that have not been previously experienced by
mankind. This paper warns that we must put substantially
more effort into mobilizing the hidden wisdom of our human
communities and the deep thinking of creative, talented minds
to survive these challenges.
Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author. Previously encoded (‘fast’, network core-related) and newly
developing (‘slow’, network periphery-related) system responses are
illustrated by three pairs of videos showing a neuronal network, as well as
the social networks of network scientists and high school students.
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Additional supporting information 

to 
 
The wisdom of networks: A general adaptation and learning 
mechanism of complex systems. The network core triggers fast responses to 

known stimuli; innovations require the slow network periphery and are encoded by 
core-remodeling (http://onlinelibrary.wiley.com/wol1/doi/10.1002/bies.201700150/abstract) 

Peter Csermely (Department of Medical Chemistry, Semmelweis University, H-1094 
Budapest, Hungary; Email: csermely.peter@med.semmelweis-univ.hu) 

 
This supporting information describes three video pairs that illustrate the (typically fast) 
retrieval and execution of previously encoded responses to known, “business as usual” 
situations that involve a few, highly connected nodes of the network core versus the (typically 
slow) development of novel responses to previously unknown, novel situations that involve a 
substantial number of network nodes from the network periphery. In the “business as usual” 
situation, core nodes have the same initial reaction (marked by identical colors), which soon 
becomes the general response of the entire network shifting the system to its respective 
attractor. In contrast, the initial response of core nodes in an unexpected situation may differ 
and may generate conflicts (as illustrated by the blinking different initial colors). In this 
“business as unusual” situation, the general response (illustrated by the final color) slowly 
emerges and involves the contribution of many individual, peripheral nodes, which represent 
the “wisdom of crowds”.[1] In case of repeated stimuli this general response may be encoded 
as a novel attractor of the system by reconfiguring its core. 
 
1. A video pair that illustrates the execution of previously encoded, “fast” versus newly 
developing, “slow” responses in neuronal networks. The video pair is an illustrative image-
flow that indicates a putative activation series of neurons in the cases of “business as usual” 
(“fast”) and unexpected (“slow”) situations, respectively. The neuronal network of the videos 
was downloaded from the following site: http://topwalls.net/3d-graphics-network (retrieved 
on 08.19.2015). 
 

 Movie S1. View the video of a “fast” decision-making process here:  
 (http://onlinelibrary.wiley.com/wol1/doi/10.1002/bies.201700150/suppinfo) 
 or here (http://linkgroup.hu/docs/video/FAST-decision-video-neurons.mp4)  
 

 Movie S2. View the video of a “slow” decision-making process here: 
(http://onlinelibrary.wiley.com/wol1/doi/10.1002/bies.201700150/suppinfo) 

 or here (http://linkgroup.hu/docs/video/SLOW-decision-video-neurons.mp4) 
 

In the video pairs of the social networks of network scientists[2] and school children,[3] the 
vertical position of the network nodes marks their community centrality,[4] i.e., their 
importance within their network module. Nodes with the highest community centrality 
correspond to the “opinion leaders” of their community.[4] 2D network images were produced 
using the Moduland Cytoscape plug-in.[5] Video frames were made by creating a plug-in for 
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the Blender software (Blender Foundation, Amsterdam, The Netherlands; 
https://www.blender.org/ retrieved on 08.22.2015) and were converted to a video using 
FFmpeg (an open-source multimedia system originated by Fabrice Bellard in 2000; 
https://www.ffmpeg.org/ retrieved on 08.22.2015). 
 
2. A video pair that illustrates the execution of previously encoded, “fast” versus newly 
developing, “slow” responses in a social network of network scientists.[2] Here, the top 
nodes correspond to well-known members of the network science field.[4] 

 

 Movie S3. View the video of a “fast” decision-making process here: 
(http://onlinelibrary.wiley.com/wol1/doi/10.1002/bies.201700150/suppinfo) 

 or here (http://linkgroup.hu/docs/video/FAST-decision-video-scientists.mp4)  
 

 Movie S4. View the video of a “slow” decision-making process here: 
(http://onlinelibrary.wiley.com/wol1/doi/10.1002/bies.201700150/suppinfo) 

 or here (http://linkgroup.hu/docs/video/SLOW-decision-video-scientists.mp4) 
 
3. A video pair that illustrates the execution of previously encoded, “fast” versus newly 
developing, “slow” responses in a social network of school children.[3] The social 
network is Community-44 of the Add Health survey, in which edge weights represent the 
strength of student friendships. This school community had four rather well-separated social 
communities of black and white, as well as lower and upper high school students.[3–5] 

 

 Movie S5. View the video of a “fast” decision-making process here: 
(http://onlinelibrary.wiley.com/wol1/doi/10.1002/bies.201700150/suppinfo) 

 or here (http://linkgroup.hu/docs/video/FAST-decision-video-students.mp4) 
 

 Movie S6. View the video of a “slow” decision-making process here: 
(http://onlinelibrary.wiley.com/wol1/doi/10.1002/bies.201700150/suppinfo) 

 or here (http://linkgroup.hu/docs/video/SLOW-decision-video-students.mp4)  
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